

series

DF-47

Long-throw rectangular diffusers

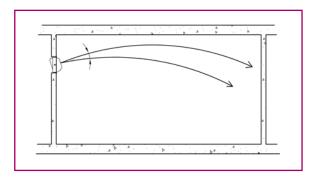
www.koolair.com

DF-47

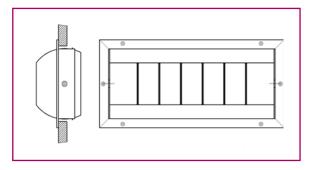
1

CONTENTS

DF-47 rectangular diffuser	2
Dimensions	3
Selection table	4
Selection and correction charts	5
Symbols	14



DF-47 rectangular diffuser


Description

The DF-47 long-throw rectangular diffuser is manufactured entirely of anodised aluminium with a natural finish. The diffuser is composed of a drum allowing the unit to be swiveled, thereby permitting the inlet airflow to be vertically positioned at an angle of $\pm 20^{\circ}$. The unit is also equipped with deflecting blades for distributing the air in horizontal fan-shape or concentrating the inlet airflow in the desired direction.

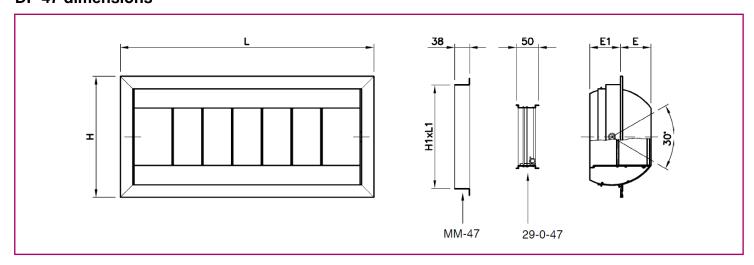
Application

These long-throw, high-flow diffusers are particularly useful when the air jet should reach some distance or should be fanned out. They are specially recommended for sport centres, industrial warehouses, clean rooms, recording studios, discotheques, large premises, etc.

Dimensions and mounting

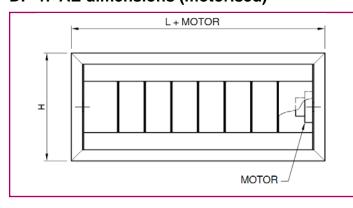
The dimensions correspond to the size of the opening. The diffuser is always screw-mounted, either directly to the surface or using the MM-47 mounting frame. Also available are 29-0-47 adjustment assemblies that can be accessed with a screwdriver from the front of the diffuser. See dimension tables on page 3.

DF-47	Rectangular, long-throw diffuser for manual operation.
DF-47-CC	Rectangular, long-throw diffuser for manual operation, adaptable to round duct.
23, 26 36 312, 410	Five sizes (see page 3)
29-O-47	Volume control damper.
MM-47	Metal mounting frame.
AE	Motorised mechanism.
TR	Thermoadjustable.


Identification

The diffusers can be manually adjusted to adapt the inlet airflow to the needs of the room. The AE model is equipped with a motor that changes the direction of the air (up or down) for use with cold or hot air (summer or winter); this motor may be proportional or on-off (two positions).

DF-47 rectangular diffuser


DF-47 dimensions

DF-47 dimensions

DF-47-AE dimensions (motorised)

The AE model with the motor drive is longer, due to the servo motor.

The CC model, constructed to be fitted directly to the round duct, can also be motor-driven (AE).

The diffusers can be swiveled $\pm 20^{\circ}$ around the horizontal symmetry axis.

DF-47 selection table

Q		Size 305x165		610x165			610x267			1219x267			1067x380				
(m³/h)	(l/s)	A _k (m²)	0,0198		}	0,0383			0,0613			0,1213			0,1508		
150	41,7	V _k (m/s)		2,1													
		$X_{0,3} X_{0,5} X_{1,0}$ (m)	4,6	2,7	1,4												
		∆P _t (Pa)		3													
		L _{wA} - dB(A)		<15													
300	83,3	V _k (m/s)		4,2			2,2										
		$X_{0,3} X_{0,5} X_{1,0}$ (m)	9,1	5,5	2,7	6,6	3,9	2,0									
		∆P _t (Pa)		10			3										
		L _{wA} - dB(A)		<15			<15										
450	125,0	V _k (m/s)		6,3			3,3			2,0							
		$X_{0,3} X_{0,5} X_{1,0}$ (m)	13,7	8,2	4,1	9,8	5,9	3,0	6,5	3,9	2,0						
		∆P _t (Pa)		24			6			2							
		L _{wA} - dB(A)		27			<15			<15							
600	166,7	V _k (m/s)		8,4			4,3			2,7							
		$X_{0,3} X_{0,5} X_{1,0}$ (m)	18,3	11,0	5,5	13,1	7,9	3,9	8,7	5,2	2,6						
		∆P _t (Pa)		42			11			4							
		L _{wA} - dB(A)		36			18			<15							
800	222,2	V _k (m/s)		11,2			5,8			3,6			1,8				
		$X_{0,3} X_{0,5} X_{1,0}$ (m)	24,4	14,6	7,3	17,5	10,5	5,2	11,6	7,0	3,5	8,3	5,0	2,5			
		∆P _t (Pa)		74			20			8			2				
		L _{wA} - dB(A)		45			27			<15			<15				
1000	277,8	V _k (m/s)		14,1			7,2			4,5			2,3			1,8	
		$X_{0,3} X_{0,5} X_{1,0}$ (m)	>30	18,3	9,1	21,9	13,1	6,6	14,5	8,7	4,4	10,3	6,2	3,1	7,5	4,5	2,2
		∆P _t (Pa)		116			31			12			3			2	
		L _{wA} - dB(A)		52			34			22			<15			<15	
2000	555,6	V _k (m/s)					14,5			9,1			4,6			3,7	
		$X_{0,3} X_{0,5} X_{1,0}$ (m)				>30	26,2	13,1	29,0	17,4	8,7	20,6		6,2	15,0	9,0	4,5
		∆P _t (Pa)					123			48			12			8	
		L _{wA} - dB(A)					56			43			25			19	
3000	833,3	V _k (m/s)								13,6			6,9			5,5	
		$X_{0,3} X_{0,5} X_{1,0}$ (m)							>30	26,1	13,1	>30	18,6	9,3	22,4	13,5	6,7
		∆P _t (Pa)								107			27			18	
		L _{wA} - dB(A)								56			38			32	
5000	1388,9	V _k (m/s)											11,5			9,2	
		$X_{0,3} X_{0,5} X_{1,0}$ (m)										>30		15,5	>30	22,4	11,2
		∆P _t (Pa)											76			49	
		L _{wA} - dB(A)											54			48	
6000	1666,7	V _k (m/s)														11,1	
		X _{0,3} X _{0,5} X _{1,0} (m)													>30	26,9	13,5
]	∆P _t (Pa)														71	
	<u> </u>	L _{wA} - dB(A)														54	
7000	1944,4	V _k (m/s)														12,9	
		X _{0,3} X _{0,5} X _{1,0} (m)													>30	>30	15,7
		∆P _t (Pa)														96	
		L _{wA} - dB(A)							<u> </u>							59	

Notes

- This selection table is based on laboratory tests as per ISO 5219 (UNE 100.710) and ISO 5135 and 3741.
- ΔT is equal to 0°C (isothermal air).
- The behaviour of the air jet with different Δt is shown in the following charts.

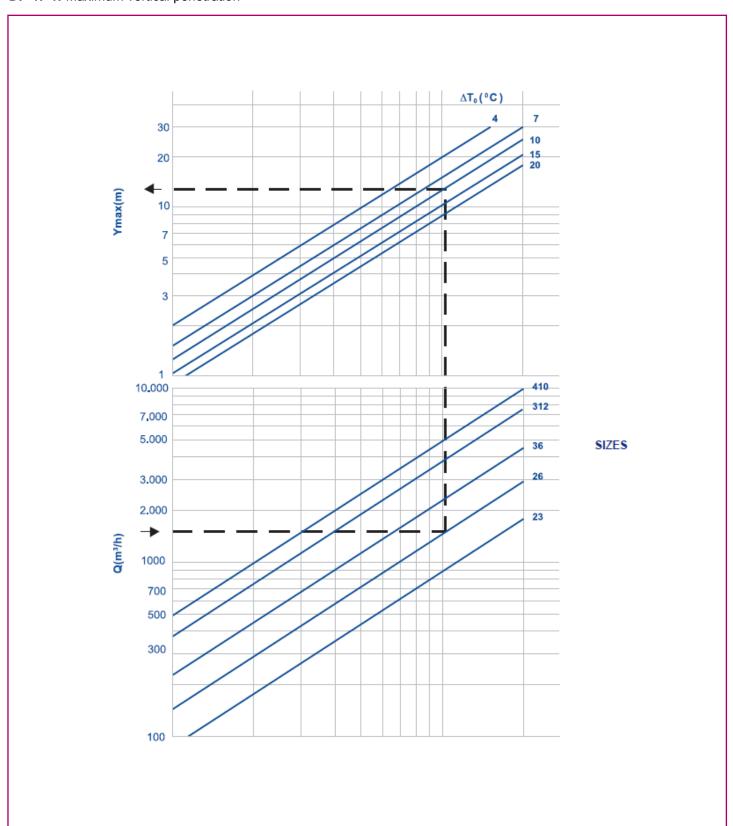
Symbols

Q = Air flow

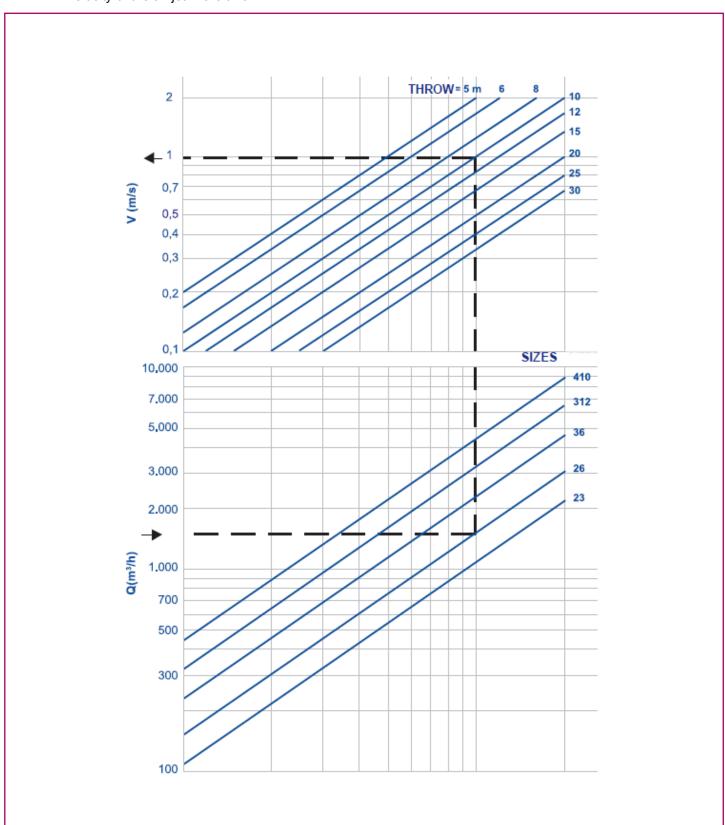
 V_K = Effective velocity

 A_K = Effective area

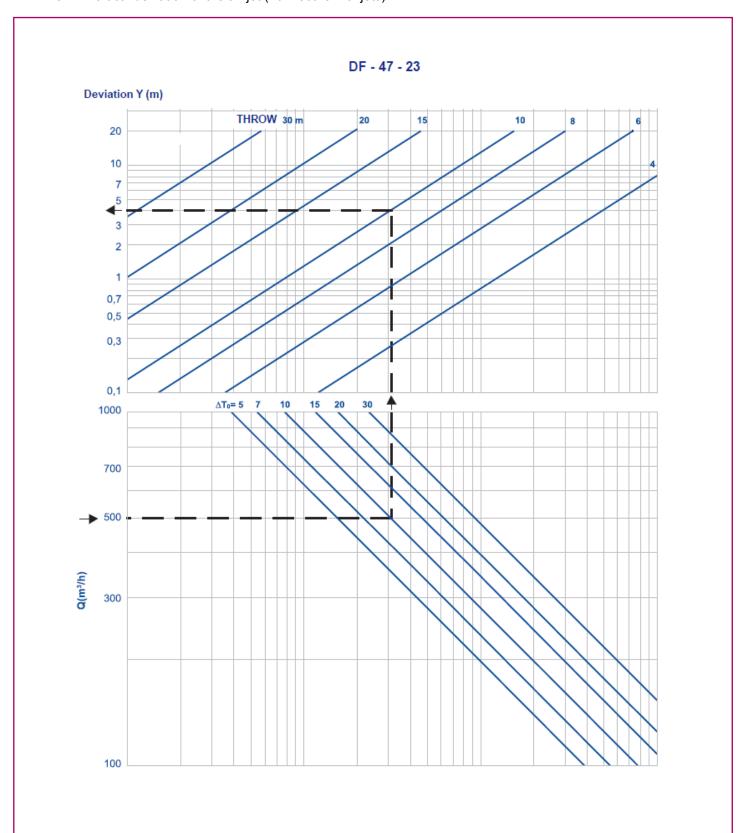
 ΔP_t = Total pressure drop


 L_{wA} = Sound power

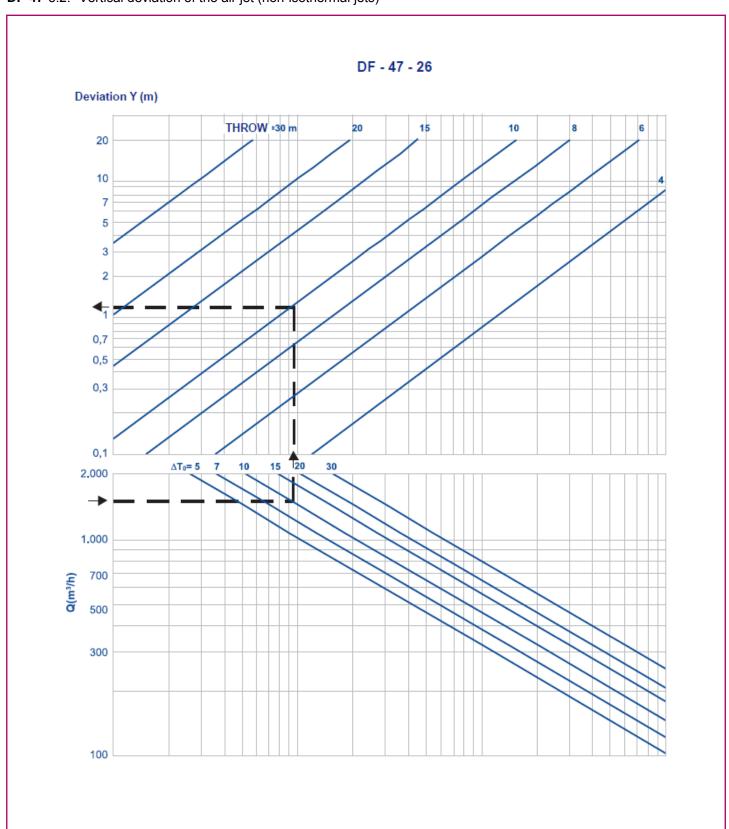
 $X_{0,3}$ - $X_{0,5}$ - $X_{1,0}$ = Throw for a terminal air velocity of 0.3, 0.5 and 1.0 m/s, respectively.


Selection charts

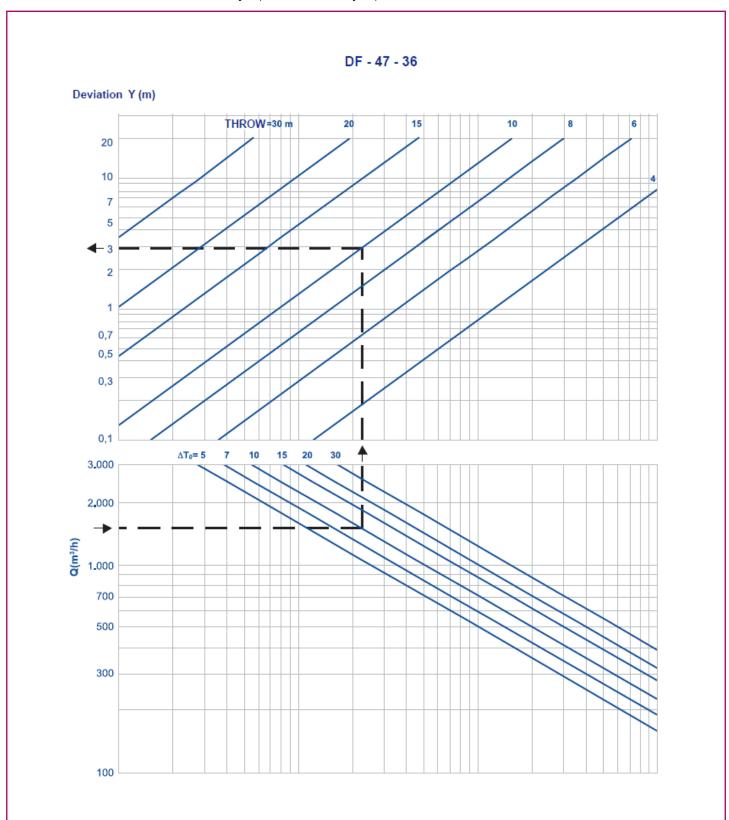
DF-47-1.-Maximum vertical penetration



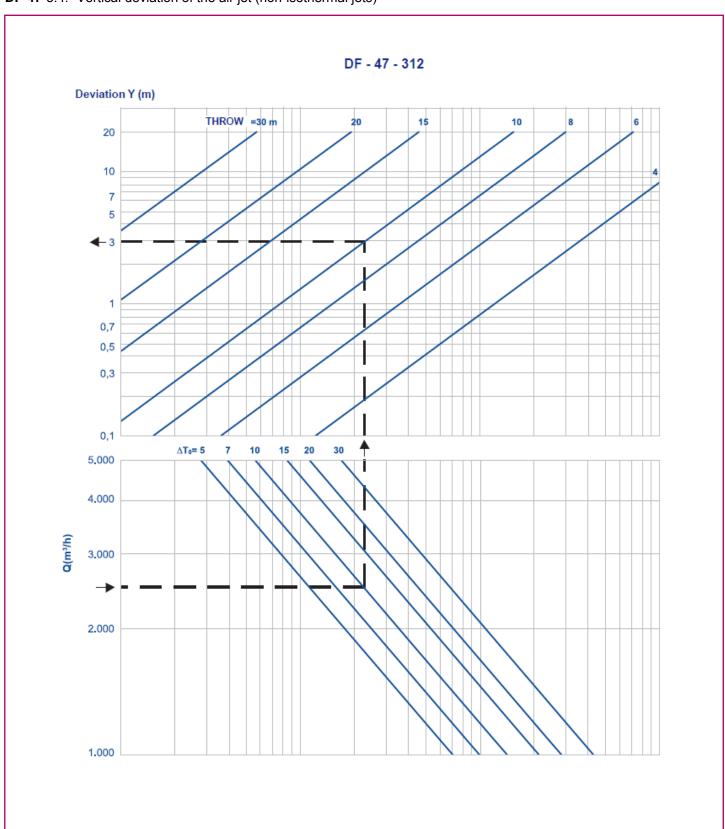
DF-47-2.- Velocity of the air jet in the throw



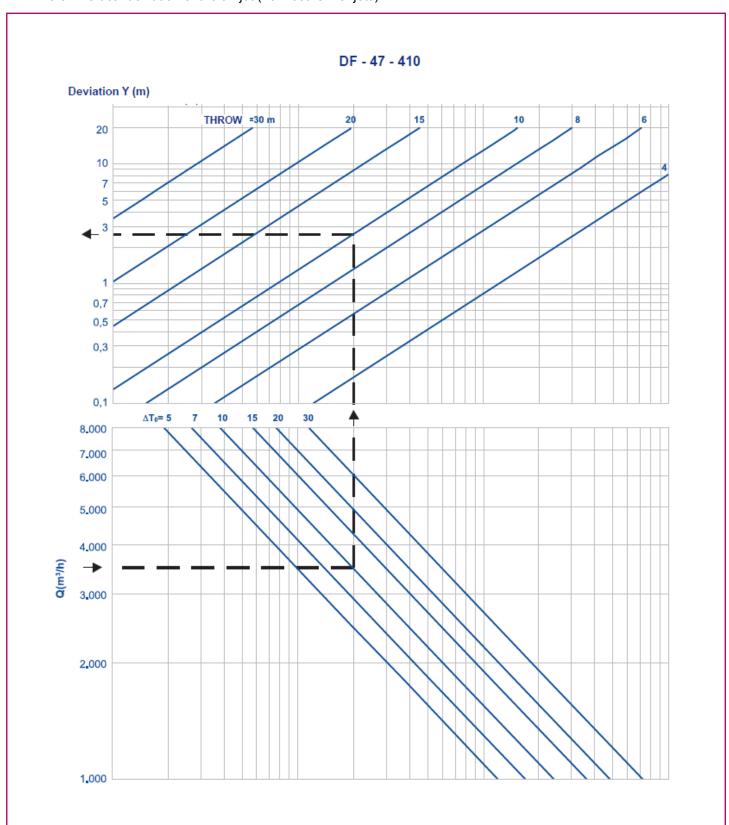
DF-47-3.1.- Vertical deviation of the air jet (non-isothermal jets)



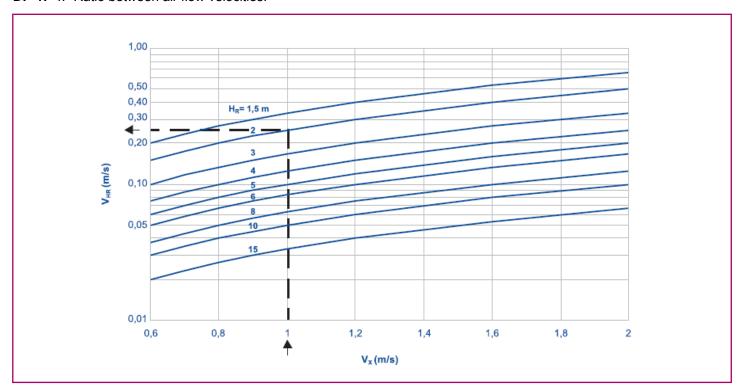
DF-47-3.2.- Vertical deviation of the air jet (non-isothermal jets)



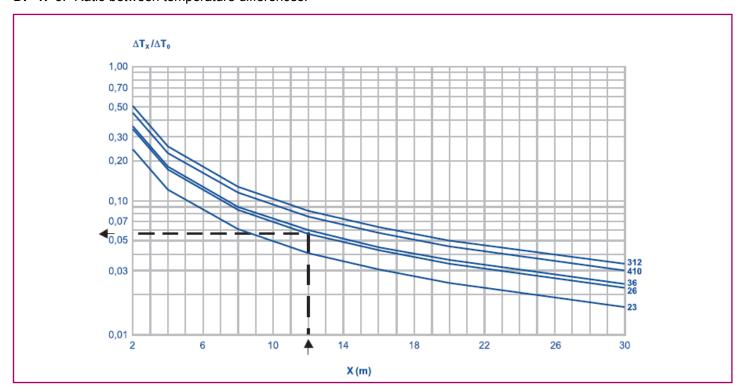
DF-47-3.3.- Vertical deviation of the air jet (non-isothermal jets)



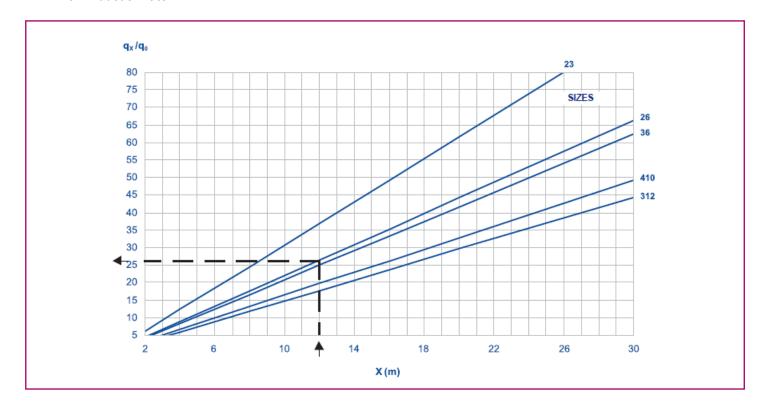
DF-47-3.4.- Vertical deviation of the air jet (non-isothermal jets)



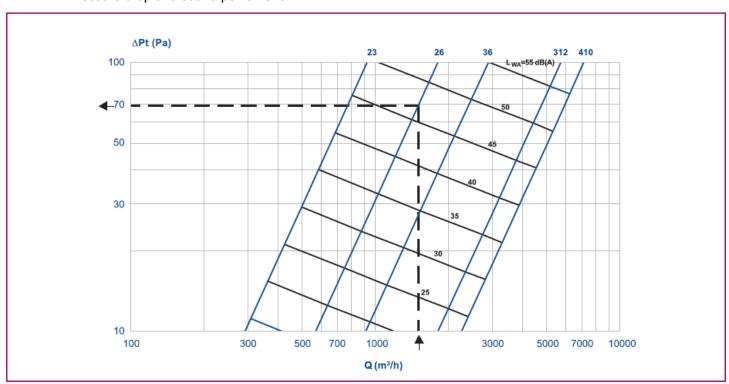
DF-47-3.5.- Vertical deviation of the air jet (non-isothermal jets)



DF-47-4.- Ratio between air flow velocities.



DF-47-5.- Ratio between temperature differences.



DF-47-6.- Induction rate

DF-47-7.- Pressure drop and sound power level

Symbols

Common symbols used in all tables and charts in the catalogue.

I(m): Distance between the equipment to the impact point of the jets (with another jet or wall) under isothermal

conditions.

 $\alpha_x(^{\circ})$: Supply angle.

L(m): Horizontal distance from the equipment to the impact point of the jets (with another jet or wall).

X(m): Throw of the air jet.

Y(m): Deviation of the air jet caused by a temperature difference between the supply and ambient air.

H(m): Installation height of the equipment.

 $H_H(m)$: Height of occupied area.

H_c(m): Height from the impact point of the jets (with another jet or wall) under isothermal conditions with respect

to the equipment location.

H_I(m): Height from the impact point of the jets (with another jet or wall) under isothermal conditions.

H_R(m): Height from impact point of the jets (with another jet or wall) with respect to the point where the air

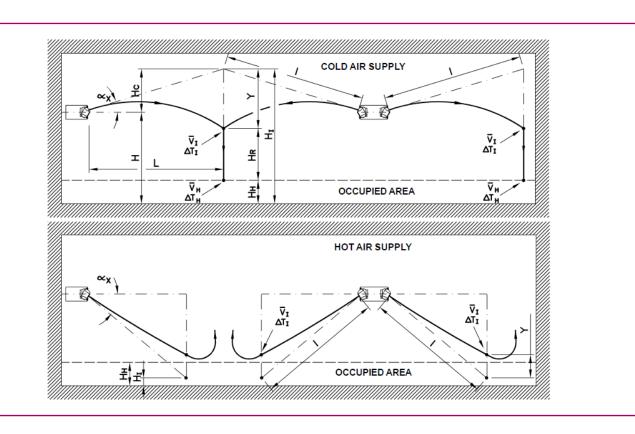
velocity and temperature are to be determined (generally the occupied area).

 $Q(m^3/h { o l/s})$: Supply air flow. $A_K(m^2)$: Effective area.

 $V_X(m/s)$: Velocity of the jets at throw X.

 $V_H(m/s)$: Velocity of the jets in the occupied area.

 $V_K(m/s)$: Effective supply velocity.


V_{HR}(m/s): Velocity of the jets at a distance, HR, below the impact point of the jets (with another jet or wall).

 $\begin{array}{ll} \Delta T_{\text{O}}(^{\circ}\text{C}) : & \text{Temperature difference between the supply jets and room air.} \\ \Delta T_{\text{X}}(^{\circ}\text{C}) : & \text{Temperature difference between the jets (for throw X) and room air.} \\ \Delta T_{\text{h}}(^{\circ}\text{C}) : & \text{Temperature difference between the jets (in occupied area) and room air.} \end{array}$

 q_x/q_o : Induction rate. Quotient between the air flow for a throw X and the air flow supplied in the zone.

 $Y_{max}(m)$: Maximum throw with vertical supply of hot air (Vx=0 m/s).

 $\Delta P_t(Pa)$: Total pressure drop. $L_{wA}[dB(A)]$: Sound power level.

THIS CATALOGUE IS INTELLECTUAL PROPERTY.

Reproduction, either partial or total, by any means, including electronic, is prohibited without prior written authorisation from KOOLAIR, S.L.

KOOLAIR, S.L.

Calle Urano, 26 Poligono industrial nº 2 – La Fuensanta 28936 Móstoles - Madrid - (España)

Tel: +34 91 645 00 33 Fax: +34 91 645 69 62 e-mail: info@koolair.com