

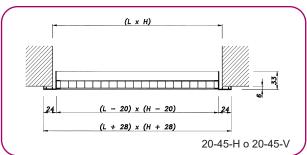
series

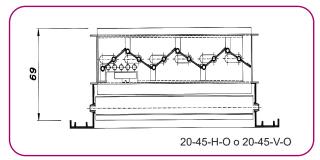
20.2

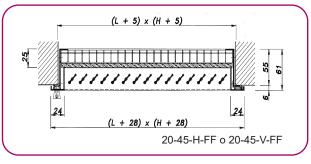
Return grilles

www.koolair.com

INDEX


Return grilles Quick selection table	2
Egg crate grilles Quick selection table	5 6
Door grilles Quick selection table	8 9
Louvres Quick selection table Accesories and mounting Information of general interest	11 12 14 16





Return grilles (fixed blades at 45°)

Description

Type 20-45 aluminium grilles, fixed blades at 45° Type 21-45 steel sheet grilles, fixed blades at 45°.

Finishes

Anodised aluminium in its natural colour. Steel sheet painted in white RAL 9010. Special finishes available upon request.

Dimensions for use with mounting frame

When the grilles are fixed with a metal frame, the size of the opening corresponds to the nominal size of the grilles. For example, a grille of 500 x 300 would require an opening of the same dimensions.

Dimensions for screw mounting

When the grilles are fixed with screws, the size of the opening corresponds to the nominal size of the grilles reduced by 5 mm in both length and height. For example, a grille of 500 x 300 would require an opening of 495 x 295.

Blade dimensions

The blade's maximum length is 490 mm, if the length is longer than that, necessary reinforcements will be added, so that the blade is never longer than the previously mentioned measurement.

Volume control damper

The damper is actuated from the front by a screw driver.

Filterholder

Upon request, the grille can be delivered with a filterholder. (Filter not included).

Identification

In all descriptions of the grille dimensions, it is supposed that the first dimension is the length and the second the height. L x H is the dimension of the free opening. When the grille does not incorporate a mounting frame but is prepared for screwing, the dimension of the opening will be L-5 mm x H-5 mm, except for type FF (filterholder) where this dimension will be L+5 mm x H+5 mm.

Quick Selection Table (Return grilles)

			200 x 100	250 x 100					500 x 150		300 x 300		800 x 150		1000 x 200			1200 x 300	
		mm			200 x 150	200 x 200	350 x 150 250 x 200	400 x 150 300 x 200	400 x 200 300 x 250	450 x 200		400 x 250 350 x 300	600 x 200	600 x 250 500 x 300	800×250	800×300	750 x 400	900 x 400 700 x 500	
	Q						سلامات	300.0	3001230	350 x 250		300 x 300	500 x 250 400 x 300	3LLX3LL	600 x 300	600×400		600 x 600	
m-m	1/5	A,	0,0076	0,0096	0,0121	0,0166	0,0217	0,0258	0,0345	0,0404	0,0416	0,0470	0,0560	0,0721	0,0915	0,1173	0,1452	Q1759	
50	13,9	V,	1,8	1,4	1,1	Q8	0,6	0,5											
		P,	3,5	2,1	1,5	Q8	0,5	0,3											
	45.7	NR	12	7		45		- 25											
60	15,7	V,	2,2 5,0	1,7 3,1	1,4 2,1	1,0 1,1	0,8 0.7	Q6 Q4	Q5 Q3										
		P, NR	17	12	7		4,	4-	4,0										
70	19,4	V,	2,5	2,0	1,5	1,2	0,9	0,8	Q6	0,5									
		P,	6,8	4,2	2,8	1,5	1,0	0,6	Q4	0,2									
Ш		NR	21	16	11	5													
80	22,2	V _k	29	2,3	1,8	1,3	1,0	0,9	Q6	0,6	0,5								
		P, NR	8,9 24	5,5 19	3,7 15	20 8	1,3	0,8	Q5	О,3	Q2								
90	25,0	V	3,3	2.6	21	1,5	1,2	1,0	Q7	Q6	0,6	0,5							
-		P,	11,3	7,0	47	2,5	1,6	1,0	Q6	0,4	0,2	0,2							
Ш		NŘ	27	22	18	11	7												
100	27,8	V _k	3,6	2,8	2,3	1,7	1,3	1,1	Q8	0,7	0,7	0,6	Q5						
		P. NR	13,9 30	8,6 25	5,8 21	3,1 14	20 9	1,2	Q8	0,5	Q3	0,3	0,2						
150	41,7	V,	3U	4,3	34	2,5	1,9	1,5	1,2	1,0	1,0	0.9	Q7	Q6	0,5				
	41,7	è		19.3	13,1	7,0	4,5	28	1.7	1,0	0.7	0.6	0.4	0,2	0,2				
		ŇŘ		36	31	25	20	14	9				-	-12	-17				
200	55,6	V,			4,6	3,3	2,6	22	1,6	1,4	1,3	1,2	1,0	0,8	Q6	Q5			
		P, NR			23,2	12,4	8,1	4,9	3,0	1,8	1,2	1,1	Q8	0,4	Q3	0,2			
200	60.4	-			39	32	27	22	17 20	11	7	6	12	10	no	ne	N.E		
250	69,4	V _k				4,2 19,4	3,2 12,6	2,7 7,7	47	1,7 2,9	1,7 1,9	1,5 1,7	1,2 1,2	1,0 0.7	Q8 Q4	Q6 Q2	Q5 Q2		
		NŘ				38	33	28	22	17	13	11	7	٠,,	4-				
300	83,3	Ų.					3,8	3,2	2,4	2,1	2,0	1,8	1,5	1,2	Q9	Q7	Q6	0,5	
		P.					18,2	11,0	6,8	41	2,8	2,4	1,7	Q9	Q6	0,4	0,2	Q1	
Щ		NŘ					38	32	27	22	17	16	12	6					
400	111,1	V,						4,3	32	28	27	2,4	20	1,5	1,2	Q9 06	Q8	Q6	
		P, NR						19,6 40	12,1 35	7,3 29	49 25	4,4 24	3,0 20	1,7 13	1,1 9	Q6	Q4	0,2	
500	138,9	V,						~	40	3.4	3,3	3,0	2,5	1.9	1,5	1,2	0.9	0,8	0
		P,							18,9	11,5	7,7	6,8	47	26	1,7	1,0	Q6	0,4	9
		NŘ							41	35	31	29	25	19	15	9			v
600	166,7	V,								41	4,0	3,5	3,0	2,3	1,8	1,4	1,1	Ф9	Æ
		P, NR								16,5 40	11,1 36	9,8 34	6,8 30	3,8 24	2,5 19	1,4 13	Q9 8	0,5	_
700	194,4	V.							-	40	47	41	3.5	27	21	1,7	1,3	1,1	
~~		è									15.1	13.3	9,3	52	34	1,9	1,2	0,7	
		NR									40	38	34	28	23	17	12	6	
800	222,2	Ų,		6.								4,7	40	3,1	2,4	1,9	1,5	1,3	
		P,		Sy	mbols	:						17,4	12,1	6,7	44	2,5	1,6	0,9	
000	260.0	NR			Vk = Effe	ctive velo	city in m/s					42	38	31 3.5	27	21	16	10	25
900	250,0	V _k			Ps = Stat	lc pressur	re În Pa						4,5 15,3	გე 85	27 56	21 32	1,7 20	1,4 1,2	
		NŘ			AK -Elle	ctive area	an m						41	34	30	24	19	13	10
1000	277,8	V,												3,9	3,0	2,4	1,9	1,6	Æ
		P, NR												10,5	6,9	4,0	2,5	1,4	~
1000	MET	-											<u> </u>	37	33	27 3,6	22	16	
1300	416,7	Ϋ́,													4,6 15,5	3,6 8,9	28 56	24 32	
		P, NR													43	37	32	26	
2000	555,6	V,														47	3,8	3,2	
		P. NR		No	Note:											15,8	10,0	5,8	
					45 40 34														
3000	833,3	Ϋ́			- This selection table is based on full-scale laboratory tests according to standards 47 190 5010 (LINE 100 710) and 190 5105 and 3741											52			
		P, NR		130	ISO 5219 (UNE 100.710) and ISO 5135 and 3741.										13,0 44	^			
4000	1111,1																	6,3	Æ
		P,																23,0	_
		NR																52	
5000	1388,9																	7,9	
		P, NR																36,0 58	
ᆜ																ш о 1			ı

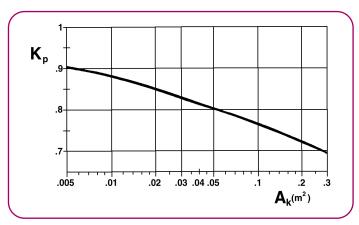
Types: 20-45-H, 20-45-H-O, 20-45-V, 20-45-V-O, 20-45-H-FF, 20-45-V-FF, 21-45-H, 21-45-V, 21-45-H-O, 21-45-V-O

Case 1. Grille mounted in wall, with duct.

Requirements

Return Air flow rate	300 m³/h
Application	Offices
Sound level	Below 25 NR
Required pressure loss	Below 5 Pa
Maximum permitted effective velocity _	3 m/s

Solution:


With the selection table for return grilles we obtain:
Q (Air flow rate) ______ 300 m³/h (or 83,3 l/s)
Vk (Effective velocity) ______ 2,1 m/s
NR (Sound level) _____ 22
Ps (Pressure loss) ______ 4,1 Pa

Grille type 20-45-H size 600 x 150, 450 x 200 or 350 x 250

Observing the results, the data obtained fulfil the requirements of the project.

Case 2. Grille mounted in wall, without duct (free air intake).

If in above example the grille would not have been connected to a duct, a correction factor (K_p) should be applied, which can be obtained from the following figure:

With the effective area (A_k) and static pressure (P_s) from the selection table we obtain the following result:

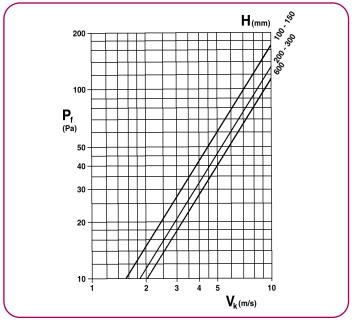
$$\begin{array}{l} A = 0,0404 \ m^2 \\ K_p = 0,81 \\ P_s = 4,1 \ Pa \\ P_s = P_s \cdot K_p \end{array} \qquad P_s = 4,1 \cdot 0,81 = 3,32 \ Pa \end{array}$$

Case 3. Grille mounted in wall, without duct, with filterholder and filter.

In this special case (grilles type 20-45-H-FF and 20-45-V-FF), two possibilities exist:

- 3.a. The grille incorporates a filterholder, but not a filter. In this case pressure loss and selection procedure are identical to those of case 2, as being a normal return grille.
- 3.b. The grille incorporates both filterholder and filter.

Using the example of case 1 and the correction of case 2, the effective velocity (V_k) should be determined from the selection table:

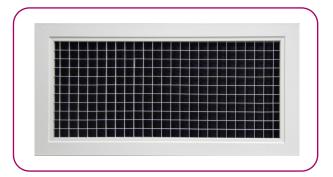

$$A_k = 0.0404 \text{ m}$$
 $V_k = 2.1 \text{ m/s}$

Entering the following figure with the known effective velocity (V_k) and the height of the grille (H), the pressure loss of the filter can be found to be about 12 Pa.

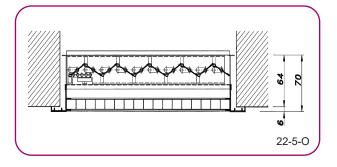
The final pressure loss will be the sum of grille and filter.

P_t (Total static pressure loss)
P_s (Static pressure loss in wall)
P_t (Static pressure loss in filter)

$$P_{t}^{'} = P_{s} + \dot{P}_{f}$$
 $P_{s} = 3,32 + 12 = 15,32 \text{ Pa}$



This graph is valid for a clean filter, type VILEDON P-15/150, S-EU-2 or similar.


For volume control damper and mounting frame, see ACCESSORIES AND MOUNTING.

Egg crate grilles (return)

(L × H) (L × H) (L + 20) × (H - 20) (L + 28) × (H + 28) 22-5

Description

Type 22-5. Egg crate grilles, constructed in aluminium.

Finishes

Anodised aluminium in its natural colour. Special finishes available upon request.

Dimensions for use with mounting frame

When the grilles are fixed with a metal frame, the size of the opening corresponds to the nominal size of the grilles. For example, a grille of 500 x 300 would require an opening of the same dimensions.

Dimensions for screw mounting

When the grilles are fixed with screws, the size of the opening corresponds to the nominal size of the grilles reduced by 5mm in both length and height. For example, a grille of 500 x 300 would require an opening of 495 x 295.

Volume control damper

The damper is actuated from the front by a screw driver.

Identification

In all descriptions of the grille dimensions, it is supposed that the first dimension is the length and the second the height. L x H is the dimension of the free opening. When the grille does not incorporate a mounting frame but is prepared for screwing, the dimension of the opening will be L-5 mm x H-5 mm.

Quick Selection Table (Egg crate grilles for return)

		Dim.	400x100	400x150	600x200	700x300	1000x350	1000x500	1300x500	1600x500	1650x600	
		(mm)	200x200	300x200	400x300	500x400	900x400	800x600	1100x600	1350x600	1250x800	
(Q	(,		250x250	350x350	450x450	600x600	700x700	800x800	900x900	1000x1000	
m³/h	Vs	Ak	0,0314	0,0489	0,1032	0,1769	0,3263	0,4485	0,5901	0,7512	0,9316	
200	55,6	V _k P _a	1,8 3,8	1,1 1,5	0,5 0,3							
250	69,4	V _k	2,2	1,4	0,7	Note:						
300	00.0	P,	5,9	2,4	0,5	-This select	tion table is bas	ed on full-scal	e laboratory te	sts according t	b	
300	83,3	V _k P _a	2,7 8,5	1,7 3,5	0,8 0,8	 This selection table is based on full-scale laboratory tests according to standards ISO 5219 (UNE 100.710) and ISO 5135 and 3741. 						
350	97,2	V _k	3,1 11.5	2,0 4,7	0,9 1,1	0,5 0,4						
400	111,1	V _k	3,5	2,3	1,1	0,6						
		P,	15,0	6,2	1,4	0,5						
450	125,0	V _k P _a	4,0 19,0	2,6 7,8	1,2 1,8	0,7 0,6						
500	138,9	V _k P.	4,4 23,5	2,8 9.7	1,3 2,2	0,8 0.7	0,4 0,2					
600	166,7	V _k	5,3	3,4	1,6	0,9	0,5					
		P.	33,8	13,9	3,1	1,1	0,3					
700	194,4	V _k P _a	6,2 46,0	4,0 19,0	1,9 4,3	1,1 1,4	0,6 0,4					
800	222,2	V _k P _a		4,5 24,8	2,2 5,6	1,3 1,9	0,7 0.6					
900	250,0	V _k		5,1	2,4	1,4	0,8	8,0				
1000	277,8	P. V.		31,4 5,7	7,0 2,7	2,4 1,6	0,7 0,9	0,4 0,6				
		P.		38,7	8,7	3,0	0,9	0,5				
1100	305,6	V _k P _a	·		3,0 10,5	1,7 3,6	0,9 1,1	0,7 0,6				
1200	333,3	V _k P _a			3,2 12,5	1,9 4,3	1,0 1,3	0,7 0,7				
1300	361,1	V _k P.			3,5 14.7	2,0 5.0	1,1 1,5	0,8 0.8	0,6 0,4			
1500	416,7	V _k P _a			4,0 19,6	2,4 6,7	1,3 2,0	0,9 1,0	0,7 0,6			
1750	486,1	V _k			4,7 26.6	2,7 9,1	1,5 2,7	1,1	0,8			
2000	555,6	V _k			5,4	3,1	1,7	1,2	0,9	0,7 0.7		
2500	694,4	P _a			34,8	11,8 3,9	3,5 2,1	1,8 1,5	1,1	0,9	0,7	
2000	022.2	P,				18,5	5,4	2,9	1,7	1,0	0,7	
3000	833,3	V _k P _a		<u> </u>		4,7 26,6	2,6 7,8	1,9 4,1	1,4 2,4	1,1 1,5	0,9 1,0	
3500	972,2	V _k P _a				5,5 38,2	3,0 10,7	2,2 5,6	1,6 3,3	1,3 2,0	1,0 1,3	
4000	1111,1	V _k					3,4 13.9	2,5 7,4	1,9 4,3	1,5 2,6	1,2 1,7	
4500	1250,0	V _k	_	_	1		3,8 17,6	2,8	2,1	1,7 3,3	1,3 2,2	
5000	1388,9	V _k	Symb		vin m/s		4,3	3,1	2,4	1,8	1,5	
6000	1666,7	P _k	Ps = St	Tective velocity tatic pressure Tective area in	in Pa		21,7 5,1	11,5 3,7	6,6 2,8	4,1 2,2	2,7 1,8	
7000	1944,4	P _k					31,3	16,6 4,3	9,6 3,3	5,9 2,6	3,8 2,1	
		P.						22,6	13,0	8,0	5,2	

Type: 22-5

Return grille mounted in ceiling, without volume control damper.

Requirements:

Return Air flow rate	600 m ³ /h
Application	Library
Required pressure loss	Below 5 Pa
Maximum permitted effective velocity	2 m/s

Solution:

With the selection table for egg crate grilles for return air we obtain:

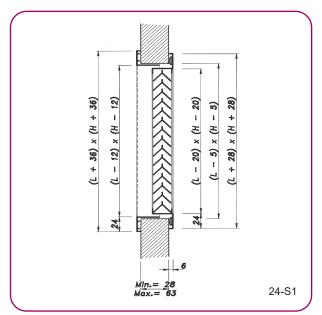
Q (Air flow rate)	600 m ³ /h (166,7 l/s)
Vk (Effective velocity)	1,6 m/s
Ps (Pressure loss)	3.1 Pa

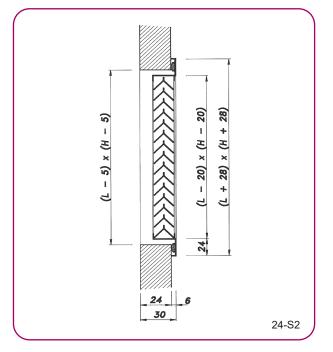
Grille type 22-5 size 600 x 200, 400 x 300 or 350 x 350

Observing the results, the data obtained fulfil the requirements of the project.

Special dimensions

In addition to the normalised dimensions indicated in the selection table, this type of grille can be easily adapted to a modular false ceiling system by simply replacing one of the elements $(600 \times 600, 900 \times 600, 600 \times 300, etc.)$


General information


The egg crate core is formed by 15 x 15 mm squares. The high useful area makes it possible to return elevated air flow rates with a minimum pressure loss. Its design adapts perfectly to that of illuminations.

Door grilles (return)

Description

Type 24-S1. Aluminium grille with counterframe. Type 24-S2. Aluminium grille without counterframe.

Finishes

Anodised aluminium in its natural colour. Special finishes available upon request.

Dimensions for screw mounting

When the grilles are fixed with screws, the size of the opening corresponds to the nominal size of the grilles reduced by 5mm in both length and height. For example, a grille of 500 x 300 would require an opening of 495 x 295.

Identification

In all descriptions of the grille dimensions, it is supposed that the first dimension is the length and the second the height.

Quick Selection Table (Door grilles)

		Dim.	300x100	400x100	500x150	400x200	500x200	600x200	600x250	600x350	700x400
		(mm)	200x150	200x200	350x200	300x250	400x250	500x250	500x300	500x400	600x500
	2	(/						400x300			
m³/h	l/s	Ą	0,0156	0,0208	0,0390	0,0448	0,0560	0,0684	0,0855	0,1218	0,1652
50	13,9	V _k	0,9	0,7	0,4						
		P.	3,6	2,0	0,6						
60	16,7	V _k	1,1	0,8	0,4						
		P.	5,1	2,9	0,8						
70	19,4	V _k	1,2	0,9	0,5	0,4					
		P.	7,0	3,9	1,1	0,8					
80	22,2	V _k	1,4	1,1	0,6	0,5	0,4				
		P.	9,1	5,1	1,5	1,1	0,7				
90	25,0	V _k	1,6	1,2	0,6	0,6	0,4				
		P,	11,6	6,5	1,8	1,4	0,9				
100	27,8	V _k	1,8	1,3	0,7	0,6	0,5	0,4			
		P.	14,3	8,0	2,3	1,7	1,1	0,7			
120	33,3	V _k	2,1	1,6	0,9	0,7	0,6	0,5	0,4		
		P.	20,5	11,6	3,3	2,5	1,6	1,1	0,7		
140	38,9	V _k	2,5	1,9	1,0	0,9	0,7	0,6	0,5		
		P.	28,0	15,7	4,5	3,4	2,2	1,5	0,9		
160	44,4	V _k		2,1	1,1	1,0	0,8	0,6	0,5		
		P.		20,5	5,8	4,4	2,8	1,9	1,2		
180	50,0	V _k		2,4	1,3	1,1	0,9	0,7	0,6	0,4	
		P.		26,0	7,4	5,6	3,6	2,4	1,5	0,8	
200	55,6	V _k			1,4	1,2	1,0	0,8	0,6	0,5	
		P,			9,1	6,9	4,4	3,0	1,9	0,9	
250	69,4	V _k			1,8	1,6	1,2	1,0	0,8	0,6	0,4
		P.			14,3	10,8	6,9	4,6	3,0	1,5	0,8
300	83,3	V _k			2,1	1,9	1,5	1,2	1,0	0,7	0,5
		P,			20,5	15,6	10,0	6,7	4,3	2,1	1,1
350	97,2	V _k			2,5	2,2	1,7	1,4	1,1	8,0	0,6
		Р.			28,0	21,2	13,6	9,1	5,8	2,9	1,6
400	111,1	V _k				2,5	2,0	1,6	1,3	0,9	0,7
		P,				27,7	17,7	11,9	7,6	3,7	2,0
500	138,9	V _k					2,5	2,0	1,6	1,1	0,8
		P,					27,7	18,6	11,9	5,9	3,2
600	166,7	V _k						2,4	1,9	1,4	1,0
		P,						26,7	17,1	8,4	4,6
700	194,4	V _k							2,3	1,6	1,2
		P,		Symbol	s:				23,3	11,5	6,2
800	222,2	V _k		-		in mir			2,6	1,8	1,3
		P,		P = S	ffective velocity tatic pressure i	n Pa			30,4	15,0	8,1
900	250,0	V _k		A, = E	ffective area In	m ²				2,1	1,5
		P.								19,0	10,3
1000	277,8	V _k								2,3	1,7
		P _a								23,4	12,7
1200	333,3	V _k		NOTE:							
		P,		_							18,3
1400	388,9	V _k		 This selection table is based on full-scale laboratory tests according to standard ISO 5219 (UNE 100.710). 							2,4
4505	,,,,	P _k		 							24,9
1600	444,4	V _k									2,7
		P.									32,6

General information

- This type of grille is always delivered with a mounting frame, provided with holes for screwing.
- The arrangement of the S-24 blades in inverted "V", impedes vision through it when applied in doors, partition walls, etc.
- Recommended transfer velocity for selection is from 0,75 to 1,25 m/s
- For grille type 24-S1 (with counterframe) installation is recommended in walls with upto 55 mm thickness. For walls with a higher thickness, use is recommended of two grilles type 20-45-H as detailed in the following drawing:

Details:

Grille mounted in door for air transfer.

Requirements

Transfer Air flow rate	140 m ³ /h
Application	Offices
Required pressure loss	Below 8 Pa
Maximum transfer velocity	1 m/s

Solution:

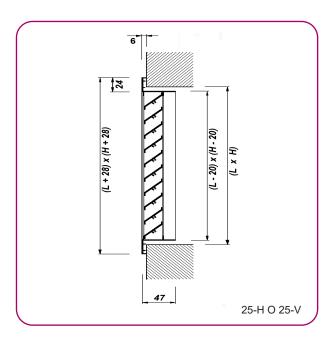
With the selection table for door grilles for air transfer we obtain:

Wo obtain.	
Q (Air flow rate)	140 m³/h (38,9 l/s)
V, (Effective velocity)	1 m/s
P (Pressure loss)	4,5 Pa

Grille type 24-S1 or 24-S2 size 500 x 150 or 350 x 200

Observing the results, the data obtained fulfil the requirements of the project.

Louvres for exterior air intake or exhaust



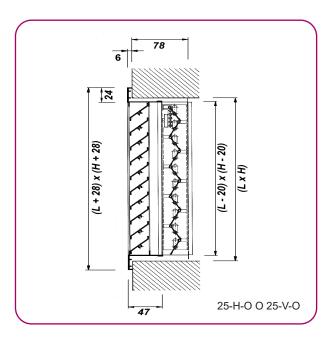
Description

Type 25. Aluminium grille.

Finishes

Anodised aluminium in its natural colour. Special finishes available upon request.

Dimensions for use with mounting frame


When the grilles are fixed with a metal frame, the size of the opening corresponds to the nominal size of the grilles. For example, a grille of 500 x 300 would require an opening of the same dimensions.

Dimensions for screw mounting

When the grilles are fixed with screws, the size of the opening corresponds to the nominal size of the grilles reduced by 5mm in both length and height. For example, a grille of 500 x 300 would require an opening of 495 x 295.

Volume control damper

The damper is actuated from the front by a screw driver.

Identification

In all descriptions of the grille dimensions, it is supposed that the first dimension is the length and the second the height. L x H is the dimension of the free opening. When the grille does not incorporate a mounting frame but is prepared for screwing, the dimension of the opening will be L-5 mm x H-5 mm.

Quick Selection Table (Louvres for exterior air intake or erxhaust)

	ı		200x100	250x100	300x100	400x100	500x100	600x100	500x150	600x150	300x300	800x150	600x200	800x200	1000x200	1000x300	900x400	1000600
		Dim.(mm)			200x150	200x200	250x200	400x150	400x200	450x200			400x300	400x400	800x250	750x400	600x600	
(m³/h)	Q (Vs)	A _{eff} (m ²)	0.0054	0.0068	0.0081	0,0108	0,0135	300x200 0.0215	300x250 0,0269	0,0323	0,0360	0,0480	0,0480	0.0640	0,0800	0,1380	0,1801	0,3002
50	13,9	V _{eff} (m/s) p _s (Pa)	2,6	2,1	1,7	1,3	1,0	-,	-,-200	-,	-,	-1	-1-400	-,	-,	21.000	-,	-,
		dB(A)	24	<20	<20	<20	<20											
60	16,7	V _{eff} (m/s) p _s (Pa)	3,1 15	2,5 10	2,1 7	1,5 4	1,2 2											
70	10.4	dB(A)	29	24	20	14	9											
70	19,4	V _{eff} (m/s) p _s (Pa)	3,6 21	2,9 13	2,4 9	1,8 5	1,4 3	0,9 1										
80	22,2	dB(A) V _{eff} (m/s)	33 4,1	28 3,3	24 2,7	<20 2,1	<20 1,6	<20 1,0										
		p _s (Pa) dB(A)	27 36	18	12 27	7 21	4 <20	2 <20										
90	25,0	V _{eff} (m/s)	4,6	3,7	3,1	2,3	1,9	1,2	0,9									
		p _s (Pa) dB(A)	35 39	22 34	15 30	9 24	6 <20	2 <20	1 <20									
100	27,8	V _{eff} (m/s) p _s (Pa)	5,1 43	4,1 27	3,4 19	2,6 11	2,1 7	1,3 3	1,0 2									
L		dB(A)	41	37	33	27	22	<20	<20									
160	44,4	V _{eff} (m/s) p _s (Pa)	8,2 110	6,6 70	5,5 49	4,1 27	3,3 18	2,1 7	1,7 4	1,4 3	1,2 2							
200	55,6	dB(A) V _{eff} (m/s)	53	48 8,2	44 6,9	38 5,1	34 4,1	24 2,6	<20 2,1	<20 1,7	<20 1,5							
	20,0	p _s (Pa)		110 54	76 50	43 44	27 39	11 29	7 24	5 21	4 <20							
250	69,4	dB(A) V _{eff} (m/s)		54	8,6	6,4	5,1	3,2	2,6	2,2	1,9	1,4	1,4	1,1				
		p _s (Pa) dB(A)			119 55	67 49	43 45	17 35	11 30	8 26	6 24	3 <20	3 <20	2 <20				
300	83,3	V _{eff} (m/s)				7,7 96	6,2 62	3,9 24	3,1	2,6	2,3	1,7	1,7	1,3	1,0			
		p _s (Pa) dB(A)				90 54	49	39	16 34	11 31	28	5 22	5 22	<20	2 <20			
400	111,1	V _{eff} (m/s) p _s (Pa)					8,2 110	5,2 43	4,1 28	3,4 19	3,1 15	2,3 9	2,3 9	1,7 5	1,4 3			
500	120.0	dB(A)					56	46	42	38	35	29	29	23 2,2	<20	10		
300	138,9	V _{eff} (m/s) p _s (Pa)						6,5 68	5,2 43	4,3 30	3,9 24	2,9 14	2,9 14	8	1,7 5	1,0 2		
600	166,7	dB(A) V _{eff} (m/s)						52	47 6,2	43 5,2	41 4,6	35 3,5	35 3,5	29 2,6	24 2,1	<20 1,2		
		p _s (Pa) dB(A)							62 52	43 48	35 45	20 39	20 39	11 33	7 28	2 <20		
700	194,4	V _{eff} (m/s)							52	6,0	5,4	4,1	4,1	3,0	2,4	1,4	1,1	
		p _s (Pa) dB(A)		Symbol	s:					59 52	47 49	27 43	27 43	15 37	10 32	3 21	2 <20	
800	222,2	V _{eff} (m/s) p _s (Pa)		V _k = Effec	tive velocity	in m/s				6,9 77	6,2 62	4,6 35	4,6 35	3,5 20	2,8 13	1,6 4	1,2 2	
L		dB(A)			pressure tive area in					55	53	46	46	40	36	24	<20	
900	250,0	V _{eff} (m/s) p _s (Pa)			ive area in ound powe						6,9 78	5,2 44	5,2 44	3,9 25	3,1 16	1,8 5	1,4 3	
1000	277,8	dB(A) V _{eff} (m/s)									55	49 5,8	49 5,8	43 4,3	38 3,5	27 2,0	21 1,5	
	2.7,0	p _s (Pa)										54 52	54 52	31 46	20 41	7 29	4 24	
1600	444,4	dB(A) V _{eff} (m/s)										52	52	40	5,6	3,2	2,5	1,5
		p _s (Pa) dB(A)													50 53	17 41	10 35	4 25
2000	555,6	V _{eff} (m/s)		Note:												4,0 26	3,1 15	1,9
		p _s (Pa) dB(A)		MOIE:												20 47	41	30
3000	833,3	V _{eff} (m/s) p _s (Pa)						laboratory	tests accor	rding to sta	ndards ISC	5219					4,6 35	2,8 12
3500	072.2	dB(A)		(UNE 100	(UNE 100.710) and ISO 5135 and 3741.								51 5,4	40 3,2				
3300	972,2	V _{eff} (m/s) p _s (Pa)															47	17
4000	1111,1	dB(A) V _{eff} (m/s)															55	44 3,7
		p _s (Pa)																22 47
\vdash		dB(A)								oxdot								4/

Types: 25-H, 25-V, 25-H-O, 25-V-O

Details

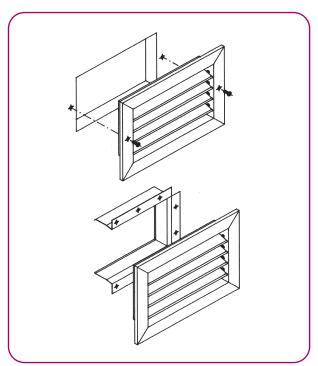
Grille mounted in wall, for exterior air intake, without duct.

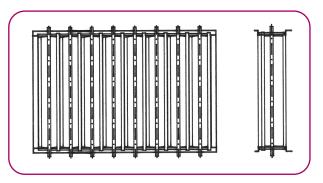
Requirements

Air flow rate	400 m ³ /h
Application	Store
Sound level	Below 25 NR
Required pressure loss	Below 5 Pa
Maximum permitted effective velocity	2 m/s

Solution:

With the selection table for grilles type 25 we obtain: Q (Air flow rate) _______400 m³/h (111,1 l/s) V_k (Effective velocity) _______1,7 m/s NR (Sound level) ______22 P_s (Pressure loss) _______4,5 Pa


Grille type 25-H size 800 x 200, 600 x 250 or 500 x 300.


Observing the results, the data obtained fulfil the requirements of the project.

Accessories and mounting

Type MM

Metallic frame for grille mounting.

Screw mounting

Placing the grille in the opening, it can be screwed directly onto the wall, sheet duct, etc.

For mounting in fibre ducts it is recommended to use the metallic mounting frame MM.

Fixing with mounting frame

Once the metallic frame is located into the wall opening (fasteners are incorporated in the frame), the grille can be placed. Pressing lightly the grille will be attached perfectly to the mounting frame by means of pressure clips. Note: The mounting frame is always provided with drilled holes, offering the possibility of screw mounting. This procedure is more useful for grilles of bigger size or weight and recommended for mounting in ceilings.

Fixing with mounting frameconcealed fixing

Once the metallic frame is located into the wall opening (fasteners are incorporated in the frame), the grille can be placed. Introducing the grille will be attached perfectly to the mounting frame by means of a concealed fixing.

Volume control damper 29-O

Volume control damper 29-O is made of galvanised steel sheet with opposite blades.

They can be applied to any type of grille (except filter holders and door grilles).

It can easily be operated from outside by a screwdriver.

The volume control damper 29-O modifies the values of sound level and pressure loss given in the selection tables.

The corrections to be applied to the table values (for the same effective velocity Vk) depend on the percentage of opening of the damper, as indicated in the following table:

OPENING	P _s	NR			
max	x 1,3	+ 2			
1/2	x 4,0	+ 12			
min	x 27,5	+ 24			

A correction factor should be applied to the sound level as a function of A_k (effective discharge area) according to the following table:

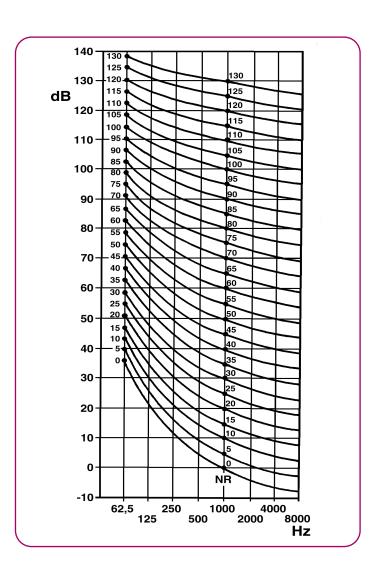
Ak (m²)	0,01	0,02	0,03	0,05	0,1	0,2
NR	-5,2	-1,9	0	+2,4	+5,8	+9,1

Normalised dimensions of the grilles (in mm)

Length (L) 200, 250, 300, 350, 400, 450, 500, 600, 700, 800, 900, 1000

Height (H) 100, 150, 200, 250, 300, 350, 400, 450, 500, 600, 700, 800, 900, 1000

Special dimensions can be supplied upon request


Information of general interest

Sound levels, NR curves

Hereafter, recommended sound levels for each type of installation are given.

Application	NR
Recording/television studios	15
Concert halls, operation rooms, libraries	20
Conference rooms, churches, residences, hot	els,
private offices	. 25-30
Banks, cafeterias, theatres, schools, restaurar	nts,
public buildings	. 35-40
Supermarkets, shopping malls, gyms	
Shops, light industry	

The NR system, which gradually will replace the NC system, has the advantage of including corrections which apply to the specified criterions, taking into account the type of noise, its duration and its location (see graph and following corrections).

Corrections	dB
a) Pure tone, easily audible	
b) Variable duration or intermittent	5
c) Noise only during working hours	+5
d) Noise during 25% of the time	+5
5%+10	
1,5% +15	
0,5%+20	
0,1% +25	
0,02% +30	
e) Residential suburbs	5
Suburbs	0
Urban residential areas	
Urban areas close to light industry	
Industrial areas	+15

Recommended velocities for air distribution units The values given below are approximate and refer to comfort installations, since for industrial applications they may be higher.

In any case these data should be treated as orientative.

Type of terminal unit	Use	(m/s)		
Grilles with single and double deflection	supply	2-3,5		
Grilles with blades fixed at 45°	return	1,5-2,5		
Grilles with filter holder	return	1,5-2,5		
Grilles for circular ducts with single and double deflection supply				
Grilles for circular ducts with single deflection	return	1,5-3		
Egg crate grilles	return	2-3		
Door grilles	air transfer	0,75-1,25		
Louvres supply or	return	2,5-4,5		
Linear grilles, wall or ceiling	supply	2-3,5		
Linear grilles, wall or ceiling	return	1,5-2,5		
Linear grilles, floor	supply	1,5-2,5		
Linear grilles, floor	return	1,5-2,5		
Linear grilles for fan-coils or induction units	supply	2,5-4		
Linear grilles for fan-coils or induction units	return	1 ,5-2,5		
Linear grilles for air curtains	supply	3-6		
Linear grilles for air curtains	return	2,5-4		
Circular diffusers with fixed cones	supply	2-3		
Circular diffusers with movable cones	supply	2,5-4,5		
Extract valves	return	1-1,5		
Ball diffusers	supply	3-9		
Square and rectangular diffusers	supply	2-3,5		
Linear diffusers	supply	2,5-4,5		
Linear diffusers	return	1,5-2,5		

THIS CATALOGUE IS INTELLECTUAL PROPERTY.

Its reproduction either of a part or its full contents is prohibited without the expressed and authentic consent of KOOLAIR, S.A.

KOOLAIR, S.A.

Calle Urano, 26 Poligono industrial nº 2 – La Fuensanta 28936 Móstoles - Madrid - (España)

Tel: +34 91 645 00 33 e-mail: info@koolair.com